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Abstract
The idea of nano-topology was originally proposed a decade ago by Thivagar. Since then, a
lot of research has been done on the generalizations of the basic notions of nano-topology to
overcome the limitations of an equivalence relation. The aim of this paper is to induce a novel
frame of nano-topology using various covering-based neighborhoods via multiple ideals.
The main properties of the proposed frame are acquired with the help of some illustrative
instances, as well as its pros compared to the previous ones are investigated amply. Amedical
application is also discussed towards the end of this paper, where multi-ideal nano-topology
is used to find the key symptoms of dengue disease. In addition, the most suitable medication
is also suggested for the cure using the proposed theory.

Keywords Nano-topology · Approximation operator · Ideals · R j -neighborhoods ·
Decision-making

Mathematics Subject Classification 2020 03E72 · 54A05 · 05C90 · 68T30

1 Introduction

First introduced in 1982 by Pawlak (1982), the rough set theory emphasizes the vagueness
or uncertainty in any information system. Pawlak’s study has proven to be quite effective
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in the mathematical modeling of quantitative data. The idea of a rough set was basically to
generalize the general set theory by splitting it into two associated subsets, namely, upper
approximation and lower approximation from a given relation on a set. Rough sets’ theory
is extensively used in decision-making, machine learning, data-mining, and processing of
images as pointed out in many published manuscripts (Mareay 2016; Zhang et al. 2021;
Zhong et al. 2003; Mareay 2024; El-Gayar 2022; El Sayed et al. 2021). In the past few
decades, active research has been done on increasing the accuracy measure of approximating
a rough set. In other words, the objective is to minimize the boundary regions by increasing
the lower approximated version and reducing the upper approximated version. To increase
the accuracy, the generalizations of a rough set were proposed and properties were studied,
which remarkably helped to overcome the limitation of an equivalence relation; some of these
generalizations are containment rough neighborhoods (Al-shami 2021b), maximal rough
neighborhoods (Al-shami 2023), subset rough neighborhoods (Al-shami and Ciucci 2022),
and recently cardinality rough neighborhoods (Al-shami andHosny 2024). In this regard, it is
worth noting that introducing the concept of idealization into rough set theory was intended
to improve the properties of approximation operators and increase the value of the accuracy
measure; that is, to reduce the region of uncertainty. Many researchers have exploited this
approach to develop new models of rough set theory, as presented in published research such
as Al-shami and Hosny (2022); Al-shami et al. (2023); Hosny et al. (2022).

Rough set models have been explored from a topological perspective since the similarities
in the behaviors of topological and rough set concepts as discussed byWiweger (1989). Later,
a lot of topologists looked at the properties of rough sets by using the notions of topologies.
To name a few, Lashin et al. (2005) dealt with neighborhoods as a subbase for topology
and related the ideas of rough set theory and their counterparts in topology. Salama et al.
(2022); Salama (2020, 2010) provided a topological approach to create lower and upper
approximation operators under a family of dominance relations. Al-shami (Al-shami 2021a,
2022) exploited somewhere dense and somewhat dense subsets which are generalizations
of open sets to extract the required information. Moreover, some authors employed supra
topology (Al-shami andAlshammari 2023) and infra topology (Al-shami andMhemdi 2023),
and bitopology (Salama 2020), which are extensions of topology, to study generalized rough
approximation spaces. Almarri and Azzam (2022) and El-Sharkasy (2021) discussed these
spaces via the minimal structures.

Using the rough set theory as a base, nano-topology was introduced in 2013 by Thivagar
and Richard (2013). As the name indicates, it is a “dwarf" topology because of its size.
It was generated using approximation operators defined on a finite set with respect to an
equivalence relation. Over the years, the theory has been extended to a binary relation, which
can be utilized in a broader domain. Also, many researchers have worked on generating nano-
topology using various mathematical tools like, neutrosophic sets (Thivagar et al. 2018),
intuitionistic fuzzy sets (Al Shumrani et al. 2019; Gul et al. 2023; Malik et al. 2024, 2023),
soft sets (Riaz et al. 2019), ideals (Kandil et al. 2013, 2020; Kaur and Gupta 2023, 2024),
graphs (Arafa et al. 2020; Kaur and Gupta 2024), and neighborhoods (Abu-Gdairi et al. 2022;
Al-shami and Hosny 2024; Kandil et al. 2021).

Nano-topology has numerous applications in various domains including science and tech-
nology. One remarkable application is in decision-making (Akram et al. 2019). Intriguingly,
the rough set helps in the simplification and interpretation of any data set by extracting use-
ful information, which is termed as “core". Likewise, the nano-topology serves the purpose
which makes it a crucial tool for intelligent systems and information sciences. The nano-
topological graph model has also helped in studying many biological processes and drawing
imperative medical conclusions about the functioning of the human heart, fetal circulation,

123



A new multi-ideal nano-topological... Page 3 of 22   400 

blood circulation, and urinary system (Arafa et al. 2020; Nawar and El Atik 2019). Also,
this topology has helped in detecting the diseases like COVID-19 and lung disease (Azzam
and Al-shami 2023; El-Bably and Al-shami 2021). In addition, nano-topology has also been
applied to electric transmission lines (Nasef et al. 2020) for reduction and the simplification
of electric circuits (El-Atik and Nasef 2020). In addition, the researchers have keenly been
interested in studying the nearly open forms, continuity, separation axioms and other topo-
logical concepts of the different approaches of nano-topology (Kaur and Gupta 2024, 2023).
This emerging subject has a great scope in the future and has great potential to serve in the
biomedical field.

In the proposed paper, nano-topology is induced by multiple ideals (instead of single) via
covering-based neighborhoods. Various results of this nano-topology are investigated with
the aid of some counterexamples. Further, a comparison has been drawn to distinguish the
current approach from the existing ones. Clearly, it is illustrated that the boundary of a set
decreases and the accuracy measure increases when defined using the proposed approxi-
mation operators, so this notion is far better than the previous theories. It has been proven
that Thivagar’s definition (Thivagar and Richard 2013) and Kandil’s definition (Kandil et al.
2021) are merely special cases of the proposed definition. Lastly, an algorithm is given to
depict the significance of thismulti-ideal nano-topology. Interestingly, this approach has been
used to find the most significant symptoms of dengue disease. Moreover, the most suitable
medicine has also been suggested for the cure of dengue disease from the given information
table.

2 Preliminaries

The already established definitions and notations will be defined in this section which is
required to deal with throughout this paper. Throughout this manuscript, U refers to the
universal set and {l, r , i, u} = Q, unless mentioned otherwise.

Definition 2.1 (Pawlak 1982) LetU be the universal set and R̃ be an indiscernibility relation.
R̃(s) is an equivalence class of s. The pair (U , R̃) is termed as an approximation space and
Z̃ ⊆ U , then the lower approximation, upper approximation and the boundary of Z̃ with
respect to R̃ are respectively defined as:

1. L R̃(Z̃) = ⋃
s∈U

{
R̃(s) : R̃(s) ⊆ Z̃

}
.

2. UR̃(Z̃) = ⋃
s∈U

{
R̃(s) : R̃(s) ∩ Z̃ �= ∅

}
.

3. BR̃(Z̃) = UR̃(Z̃) − L R̃(Z̃).

Definition 2.2 (Thivagar and Richard 2013) Let τR̃(Z̃) =
{

U ,∅, L R̃(Z̃), UR̃(Z̃), BR̃(Z̃)
}
,

where Z̃ ⊆ U . Then, τR̃(Z̃) is known as nano-topology on U with respect to Z̃ and the pair
(U , τR̃(Z̃)) is called a nano-topological space. Elements of (U , τR̃(Z̃)) are known as the
nano-open sets, and their complements are called nano-closed sets.

Remark 2.3 (Thivagar and Richard 2013) If K ⊆ U , then the union of all nano-open subsets
of K is called nano-interior of K , written as τ int(K ) and the intersection of all nano-closed
sets containing K is called nano-closure of K , written as τcl(K ).

Definition 2.4 (Kandil et al. 2021) Let U be the universe and R̃ be any relation on U . The
after set and the fore set of k ∈ U are respectively defined by k R̃ = {y ∈ U ; k R̃y} and
R̃k = {y ∈ U ; y R̃k}.
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Definition 2.5 (Abd El-Monsef et al. 2015) Let U be a non-empty finite set. Two types of
covers of U induced from the relation R̃ are represented as follows:

1. Cr = {k R̃ : k ∈ U }. If ⋃
k∈U k R̃ = U , then it is called r -cover of U .

2. Cl = {R̃k : k ∈ U }. If ⋃
k∈U R̃k = U , then it is called l-cover of U .

Definition 2.6 (Abd El-Monsef et al. 2015) LetU be a non-empty finite set, let C j be j-cover
of U , where j ∈ {r , l}. The triplet < U , R̃, C j > is called R̃ j -covering approximation space
(briefly, R̃ j − C .A.S).

Definition 2.7 (Abd El-Monsef et al. 2015) Let < U , R̃, C j > as the R̃ j − C .A.S. ∀ k ∈ U ,
the four neighborhoods R̃ j (k), where j ∈ Q are defined as :

1. R̃r (k) = ⋂{F ∈ Cr : k ∈ F}.
2. R̃l(k) = ⋂{F ∈ Cl : k ∈ F}.
3. R̃i (k) = R̃r (k) ∩ R̃l(k).
4. R̃u(k) = R̃r (k) ∪ R̃l(k).

Lemma 2.8 (Kandil et al. 2021) Let < U , R̃, C j > as R̃ j − C .A.S for all j ∈ Q. Then,

1. R̃ j (k) �= ∅ ∀ k ∈ U .

2. k ∈ R̃ j (k) ∀ k ∈ U .

3. If k ∈ R̃ j (y), then R̃ j (k) ⊆ R̃ j (y).

Definition 2.9 (Kandil et al. 2021) Let < U , R̃, C j > as the R̃ j − C .A.S for all j ∈ Q and
H ⊆ U . Then, R̃ j - lower, R̃ j - upper approximation and R̃ j - boundary of a finite set H are
defined as :

1. R̃ j (H) = ⋃
k∈U {R̃ j (k) : R̃ j (k) ⊆ H}.

2. R̃ j (H) = ⋃
k∈U {R̃ j (k) : R̃ j (k) ∩ H �= ∅}.

3. BR̃ j
(H) = R̃ j (H) − R̃ j (H).

Definition 2.10 (Kandil et al. 2021) An ideal Î on a setU is a non-empty collection of subsets
of U for which the following holds true:

1. H ∈ Î, K ⊆ H 	⇒ K ∈ Î.
2. H ∈ Î, K ∈ Î 	⇒ H ∪ K ∈ Î.

Definition 2.11 (Kandil et al. 2021) Let < U , R̃, C j > as the R̃ j − C .A.S for all j ∈ Q. Let
H ⊆ U . If Î is an ideal on U , then R̃ j - lower, R̃ j - upper approximation and R̃ j - boundary
of a finite set H via an ideal Î are defined as :

1. R̃ j
Î
(H) = {k ∈ H : R̃ j (k) ∩ Hc ∈ Î}.

2. R̃ j
Î
(H) = {

H ∪ {k ∈ U : R̃ j (x) ∩ H /∈ Î}}.
3. BÎ

R̃ j
(H) = R̃ j

Î
(H) − R̃ j

Î
(H).

Definition 2.12 (Kandil et al. 2021) The collection τ Î
R̃ j

(H) = {∅, U , R̃ j
Î
(H),

R̃ j
Î
(H), BÎ

R̃ j
(H)} forms a nano-topology via covering-based neighborhood induced by an

ideal on U with respect to H for a binary relation R̃. The class τ Î
R̃ j

(H) is named a Î-

nano-topology.
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3 Covering basedmulti-ideal nano-topology

In this section, we define the covering-based multi-ideal nano-topology and derive some
important results. Henceforth, R is a binary relation, unless mentioned otherwise.

Definition 3.1 Let Î1, Î2, Î3,...,În be the ‘n’ ideals on U , then the collection induced by
these ‘n’ ideals, denoted by < nÎ > is given by:

< nÎ >= {Q1 ∪ Q2 ∪ ... ∪ Qn : Q1 ∈ Î1, Q2 ∈ Î2, ..., Qn ∈ În}.

Proposition 3.2 If Î1, Î2, ..., În are ‘n’ ideals on U, H ⊆ U and K ⊆ U, then the set
< nÎ > satisfies the following conditions:

1. < nÎ >�= ∅.

2. H ∈< nÎ > and K ⊆ H 	⇒ K ∈< nÎ > .

3. H , K ∈< nÎ > 	⇒ H ∪ K ∈< nÎ >.

Proof 1. Since each Îi �= ∅, there exists a nonempty subset Qi ofU for each i , so Q1∪ Q2∪
... ∪ Qn is a nonempty subset of În , which means that < nÎ >�= ∅.
2. Let H ∈< nÎ >. Then, by Definition 3.1 there exist some nonempty subsets Qi of U that
are contained in H . Without loss of generality, let H = Q1 ∪ Q2. Suppose that K ⊆ H .
Then it can divide K into subsets of Q1 and Q2; say, K = M1 ∪ M2 such that M1 ⊆ Q1 and
M2 ⊆ Q2. This implies that M1 ∈ Î1 and M2 ∈ Î2; thus, K = M1∪ M2∪∅∪ ...∪∅ ∈< nÎ >,
as required.
3. Following a similar argument given in item 2, the proof follows. ��

According to the above proposition, < nÎ > is an ideal on U .

Definition 3.3 Let < U , R, C j > as the R j - covering approximation space for all j ∈ Q.
Let H ⊆ U . If Î1, Î2, , Î3, ..., În are ‘n’ ideals on a non-empty set U , then the R j - lower,
R j - upper approximation and R j - boundary of a set H are mathematically represented as :

1. R j
<nÎ>(H) = {k ∈ H : R j (k) ∩ Hc ∈ < nÎ >}.

2. R j
<nÎ>

(H) = H ∪ {k ∈ U : R j (k) ∩ H /∈ < nÎ >}.
3. B<nÎ>

R j (H) = R j
<nÎ>

(H) − R j
<nÎ>(H).

Remark 3.4 If Î1 = Î2 = Î3 = ... = În = Î, then Definition 3.3 coincide with Definition
2.11 and if Î1 = Î2 = Î3 = ... = În = ∅, then the Definition 3.3 coincide with the
Definition 2.9. If relation is equivalence and Î1 = Î2 = Î3 = ... = În = ∅, then the
Definition 3.3 coincide with the Definition 2.1.

Definition 3.5 Let< U , R, C j > as R j - covering approximation space. Then for j ∈ Q, the
accuracy measure of subset H of a finite universe U , induced by the different neighborhoods
are respectively defined as :

μ<nÎ>
R j

(H) =
|R j

<nÎ>(H)|
|R j

<nÎ>
(H)|
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Definition 3.6 Let U be the universe, H be a subset of U , and R j be the different kinds of
neighborhoods, where j ∈ Q. Then the class

{U ,∅, R j
<nÎ>(H), R j

<nÎ>
(H), B

ˆ<nI>
R j

(H)}

forms a topology that is termed as multi-ideal nano-topology, denoted by τ<nÎ>
R j

- NT.

The pair (U , τ<nÎ>
R j

(H)) is defined as a multi-ideal nano-topological space, abbreviated

as τ<nÎ>
R j

− N T S.

Definition 3.7 The elements of τ<nÎ>
R j

(H) are called multi-ideal nano open (τ<nÎ>
R j

-nano

open) sets. The complements of τ<nÎ>
R j

-nano open sets are called multi-ideal nano closed

(τ<nÎ>
R j

-nano closed) sets.

If K ⊆ U , then the union of all τ<nÎ>
R j

-nano open subsets of K is called multi-ideal

nano interior (τ<nÎ>
R j

-nano interior) of K , written as τ<nÎ>
R j

int(K ) and the intersection of

all τ<nÎ>
R j

-nano closed sets containing K is called multi-ideal nano closure (τ<nÎ>
R j

-nano

closure) of K , written as τ<nÎ>
R j

cl(K ).

In what follows, we set up the main properties of the proposed approximation operators.

Proposition 3.8 Let (U , τR j
<nÎ>(H)) be an τR j

<nÎ> − N T S with respect to H ⊆ U and
let E ∪ F ⊆ U. Then, the given results hold ∀ j ∈ Q, unless mentioned otherwise:

1. R j
<nÎ>(E) ⊆ E ⊆ R j

<nÎ>
(E).

2. R j
<nÎ>(U ) = R j

<nÎ>
(U ) = U.

3. R j
<nÎ>(∅)) = R j

<nÎ>
(∅) = ∅.

4. If E ⊆ F, then R j
<nÎ>(E) ⊆ R j

<nÎ>(F) and R j
<nÎ>

(E) ⊆ R j
<nÎ>

(F).

5. R j
<nÎ>(E) = (R j

<nÎ>
(Ec))

c

.

6. R j
<nÎ>

(E) = (R j
<nÎ>(Ec))

c
.

7. R j
<nÎ>(R j

<nÎ>(E)) = R j
<nÎ>(E) and R j

<nÎ>
(R j

<nÎ>
(E)) = R j

<nÎ>
(E)).

8. R j
<nÎ>(R j

<nÎ>(E)) ⊆ R j
<nÎ>(E) and R j

<nÎ> ⊆ R j
<nÎ>

(R j
<nÎ>

(E)).

9. If E ∈< nÎ >, then R j
<nÎ>

(E) = E.

10. If Ec ∈< nÎ >, then R j
<nÎ>(E) = E.

Proof Proofs (1), (2), and (3) follow directly from Definition 3.3. (4) Let E ⊆ F . Let

v ∈ R j
<nÎ>(E). Then, v ∈ E and R j (v) ∩ Ec ∈ < nÎ >. 	⇒ v ∈ F and R j (v) ∩

Fc ∈ < nÎ > (as E ⊆ F). 	⇒ v ∈ R j
<nÎ>(F). Similarly, if v ∈ R j

<nÎ>
(E), then

R j (v) ∩ E /∈ < nÎ >. As E ⊆ F , R j (v) ∩ F /∈ < nÎ > 	⇒ v ∈ R j
<nÎ>

(F). Thus,

R j
<nÎ>(E) ⊆ R j

<nÎ>(F) ∀ j ∈ Q.
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(5) Let v ∈ (R j
<nÎ>

((Ec)))
c

	⇒ v /∈ (R j
<nÎ>

(Ec)). 	⇒ v /∈ Ec and v /∈
{w ∈ U : R j (w) ∩ Ec /∈ < nÎ >}.

Therefore, v ∈ E and R j (w) ∩ Ec ∈ < nÎ >. 	⇒ v ∈ R j
<nÎ>(E).

For the converse part, v ∈ R j
<nÎ>(E), 	⇒ v ∈ E and R j (v) ∩ Ec ∈ < nÎ >.

	⇒ v /∈ Ec and v /∈ {w ∈ U : R j (w) ∩ Ec /∈ < nÎ >}. 	⇒ v /∈ R j
<nÎ>

((Ec), that is,

v ∈ (R j
<nÎ>

(Ec))c. Therefore, R j
<nÎ>(E) = (R j

<nÎ>
(Ec))

c

∀ j ∈ Q.
(6) Proof of this part is similar to (5).

(7) Fromparts (1) and (4),wehave R j
<nÎ>(R j

<nÎ>(E)) ⊆ R j
<nÎ>(E).Now,wewant to

prove that R j
<nÎ>(E) ⊆ R j

<nÎ>(R j
<nÎ>(E)). Let v /∈ R j

<nÎ>(R j
<nÎ>(E)) for all j ∈

{l, r , i}. There exist two cases, firstly ifv /∈ R j
<nÎ>, then R j (v)∩(R j

<nÎ>(E))c �= ∅. There-
fore, there exists w ∈ R j (v) ∩ (R j

<nÎ>(E))
c
. From Lemma 2.8, R j (w) ⊆ R j (x) and y /∈

R j
<nÎ>(E) for all j ∈ Q. Hence,w /∈ E orw ∈ E, R j (w)∩ Ec /∈ < nÎ >, that meansw /∈

R j
<nÎ>(E) or R j (v) ∩ (E)c /∈ < nÎ >. Thus, both cases lead to R j (v) ∩ (E)c /∈ < nÎ >,

which is a contradiction with the assumption. This result need not be true for j = u, as
depicted in the following counterexample: LetU = {�1,�2,�3,�4,�5} be a universal set.
R = {{�1,�1}, {�1,�2}, {�1,�3}, {�3,�1}, {�2,�2}, {�3,�4}, {�5,�2}, {�4,�5}}.
It’s a binary (non-equivalence) relation. Let Î1 = {∅, {�1}}, Î2 = {∅, {�4}}, then <

2Î > = < Î1, Î2 >= {∅, {�1}, {�4}, {�1,�4}}. If E = {�2,�3}, then Ru
<nÎ>(E) =

{�3} but Ru
<nÎ>(Ru

<nÎ>(E)) = ∅. Also, if E = {�1,�5}, Ru
<nÎ>

(E) = {�1,�2,�5}
but Ru

<nÎ>
(Ru

<nÎ>
(E)) = {�1,�2,�3,�5}.

(8) By using (4), the proof of this part is obvious.
(9), (10) Proof follow directly from Definition 3.3. ��

Proposition 3.9 If the relation is symmetric, then Rr
<nÎ>(H) = Rl

<nÎ>(H) = Ri
<nÎ>(H) =

Ru
<nÎ>(H) and Rr

<nÎ>
(H) = Rl

<nÎ>
(H) = Ri

<nÎ>
(H) = Ru

<nÎ>
(H).

Proof It follows from the fact that Rr (x) = Rl(x) = Ri (x) = Ru(x) for all x ∈ U when R
is symmetric. ��

Example 3.10 LetU = {�1, �2, �3, �4, �5, �6, �7, �8} and a subset H = {�1, �4, �6, �8}.
Let Î1 = {∅, {�2}}, Î2 = {∅, {�2}, {�6}, {�2, �6}}, and Î3 = {∅, {�5}, {�8}, {�5, �8}}.
Then,< Î1, Î2, Î3 >= {∅, {�2}, {�6}, {�5}, {�8}, {�2, �6}, {�6, �5}, {�5, �8}, {�2, �8},
{�2, �5}, {�6, �8}, {�2, �6, �5}, {�6, �5, �8}, {�5, �8, �2}, {�2, �6, �5, �8}}. Let R =
{{�1, �1}, {�2, �2}, {�3, �3}, {�4, �4}, {�5, �5}, {�6, �6}, {�7, �7}, {�8, �8}, {�1, �2},
{�1, �5}, {�2, �6}, {�3, �8}, {�3, �1}, {�4, �8}, {�5, �2}, {�5, �7}}. It is a non-equivalence
relation (as it is non-symmetric and non-transitive). Then,

• τ<3Î>
Rr

(H) = {∅, U , {�4, �6, �8}, {�1, �3, �4, �6, �8}, {�1, �3}}.
• τ<3Î>

Rl
(H) = {∅, U , {�1, �4, �6, �8}, {�1, �4, �6}, {�8}}.

• τ<3Î>
Ri

(H) = {∅, U , {�1, �4, �6, �8}}.
• τ<3Î>

Ru
(H) = {∅, U , {�6, �8}, {�1, �3, �4, �6, �8}, {�1, �3, �4}}.
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Note : So, in general, τ<nÎ>
Rr

(H) �= τ<nÎ>
Rl

(H) �= τ<nÎ>
Ri

(H) �= τ<nÎ>
Ru

(H), where H is a
subset of U . (Because for non-symmetric relation, Rr (x) �= Rl(x) �= Ri (x) �= Ru(x) for all

x ∈ U and hence in general, Rr
<nÎ>(H) �= Rl

<nÎ>(H) �= Ri
<nÎ>(H) �= Ru

<nÎ>(H) and

Rr
<nÎ>

(H) �= Rl
<nÎ>

(H) �= Ri
<nÎ>

(H) �= Ru
<nÎ>

(H).) In particular, τ<nÎ>
Rr

cl(H) �=
τ<nÎ>

Rl
cl(H) �= τ<nÎ>

Ri
cl(H) �= τ<nÎ>

Ru
cl(H). Similarly, τ<nÎ>

Rr
int(H) �= τ<nÎ>

Rl
int(H) �=

τ<nÎ>
Ri

int(H) �= τ<nÎ>
Ru

int(H), where H is a subset of U .

Theorem 3.11 Let (U , τ<nÎ>
R j

(X)) be an τ<nÎ>
R j

− N T S with respect to X where X ⊆ U.
Then, the following results are true for every j ∈ Q and any subset K of U:

1. U − τ<nÎ>
R j

int(K )= τ<nÎ>
R j

cl(U − K ).

2. U − τ<nÎ>
R j

cl(K )= τ<nÎ>
R j

int(U − K ).

Proof Obvious by the definition of τ<nÎ>
R j

-nano closure and τ<nÎ>
R j

-nano interior. ��

The proof of the next two propositions is obvious by the definition of τ<nÎ>
R j

-nano closure

and τ<nÎ>
R j

-nano interior.

Proposition 3.12 Let (U , τ<nÎ>
R j

(H)) be an τ<nÎ>
R j

− N T S with respect to H where H ⊆ U.
and let E ∪ F ⊆ U. Then the results are true for every j ∈ Q as following:

1. E ⊆ τ<nÎ>
R j

cl(E).

2. E is multi-ideal nano closed if τ<nÎ>
R j

cl(E) = E.

3. τ<nÎ>
R j

cl(∅) = ∅ and τ<nÎ>
R j

cl(U ) = U.

4. E ⊆ F 	⇒ τ<nÎ>
R j

cl(E) ⊆ τ<nÎ>
R j

cl(F).

5. τ<nÎ>
R j

cl(E ∪ F) = τ<nÎ>
R j

cl(E) ∪ τ<nÎ>
R j

cl(F).

6. τ<nÎ>
R j

cl(E ∩ F) ⊆ τ<nÎ>
R j

cl(E) ∩ τ<nÎ>
R j

cl(F).

7. τ<nÎ>
R j

cl(τ<nÎ>
R j

cl(E)) = τ<nÎ>
R j

cl(E).

Proposition 3.13 Let (U , τ<nÎ>
R j

(X)) be an τ<nÎ>
R j

− N T S with respect to X where X ⊆ U.
and let E ∪ F ⊆ U. Then the results are true for every j ∈ Q as following:

1. E is multi-ideal nano open iff τ<nÎ>
R j

int(E) = E.

2. τ<nÎ>
R j

int(∅) = ∅ and τ<nÎ>
R j

int(U ) = U.

3. E ⊆ F 	⇒ τ<nÎ>
R j

int(E) ⊆ τ<nÎ>
R j

int(F).

4. τ<nÎ>
R j

int(E) ∪ τ<nÎ>
R j

int(F) ⊆ τ<nÎ>
R j

int(E ∪ F).

5. τ<nÎ>
R j

int(E ∩ F) = τ<nÎ>
R j

int(E) ∩ τ<nÎ>
R j

int(F).

6. τ<nÎ>
R j

int(τ<nÎ>
R j

int(E)) = τ<nÎ>
R j

int(E).

Proposition 3.14 Let (U , τ<nÎ>
R j

(X)) be an τ<nÎ>
R j

− N T S with respect to X where E ∪ F ⊆
U. Then the statements hold true ∀ j ∈ Q as follows:
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1. R j
<nÎ>(E ∩ F) = R j

<nÎ>(E) ∩ R j
<nÎ>(F).

2. R j
<nÎ>(E) ∪ R j

<nÎ>(F) ⊆ R j
<nÎ>(E ∪ F).

3. R j
<nÎ>

(E ∩ F) ⊆ R j
<nÎ>

(E) ∩ R j
<nÎ>

(F).

4. R j
<nÎ>

(E ∪ F) = R j
<nÎ>

(E) ∪ R j
<nÎ>

(F).

Proof (1) Let v ∈ R j
<nÎ>(E) ∩ R j

<nÎ>(F). Then, v ∈ E, R j (v) ∩ Ec ∈ < nÎ > and

v ∈ F , R j (v)∩Fc ∈ < nÎ >. 	⇒ v ∈ E ∩ F and (R j (v)∩Ec)∪(R j (v) ∩ Fc) ∈ < nÎ >.

	⇒ v ∈ E ∩ F and R j (v) ∩ (E ∩ F)c ∈ < nÎ >. 	⇒ v ∈ R j
<nÎ>(E ∩ F).

Thus, R j
<nÎ>(E) ∩ R j

<nÎ>(F) ⊆ R j
<nÎ>(E ∩ F). For the converse part, E ∩ F ⊆

E and E ∩ F ⊆ F . 	⇒ R j
<nÎ>(E ∩ F) ⊆ R j

<nÎ>(E) and R j
<nÎ>(E ∩ F) ⊆

R j
<nÎ>(F). 	⇒ R j

<nÎ>(E ∩ F) ⊆ R j
<nÎ>(E) ∩ R j

<nÎ>(F). So, R j
<nÎ>(E ∩ F) =

R j
<nÎ>(E) ∩ R j

<nÎ>(F).

(2) Since, E ⊆ E ∪ F and F ⊆ E ∪ F . So, R j
<nÎ>(E) ⊆ R j

<nÎ>(E ∪ F) and

R j
<nÎ>(F) ⊆ R j

<nÎ>(E ∪ F). Hence, R j
<nÎ>(E) ∪ R j

<nÎ>(F) ⊆ R j
<nÎ>(E ∪ F).

(3) As E ∩ F ⊆ E and E ∩ F ⊆ F . 	⇒ R j
<nÎ>

(E ∩ F) ⊆ R j
<nÎ>

(E) and R j
<nÎ>

(E ∩
F) ⊆ R j

<nÎ>
(F). Therefore, R j

<nÎ>
(E ∩ F) ⊆ R j

<nÎ>
(E) ∩ R j

<nÎ>
(F).

(4) As E ⊆ E ∪ F and F ⊆ E ∪ F . 	⇒ R j
<nÎ>

(E) ⊆ R j
<nÎ>

(E ∪ F) and

R j
<nÎ>

(F) ⊆ R j
<nÎ>

(E ∪ F). 	⇒ R j
<nÎ>

(E) ∪ R j
<nÎ>

(F) ⊆ R j
<nÎ>

(E ∪ F).

For the proof of converse part, let v /∈ R j
<nÎ>

(E) ∪ R j
<nÎ>

(F). 	⇒ v /∈ R j
<nÎ>

(E)

and v /∈ R j
<nÎ>

(F). 	⇒ v /∈ E , R j (v)∩ E ∈ < nÎ > and v /∈ F , R j (v)∩ F ∈ < nÎ >.

	⇒ v /∈ E ∪ F and R j (v) ∩ (E ∪ F) ∈ < nÎ >. 	⇒ v /∈ R j
<nÎ>(E ∪ F).

	⇒ R j
<nÎ>

(E ∪ F) ⊆ R j
<nÎ>

(E) ∪ R j
<nÎ>

(F). Therefore, R j
<nÎ>

(E ∪ F) =
R j

<nÎ>
(E) ∪ R j

<nÎ>
(F). ��

Proposition 3.15 Let (U , τ<nÎ>
R j

(X)) be an τ<nÎ>
R j

− N T S with respect to X where X ⊆ U.
Let E ⊆ U . Then the following statements hold true:

1. Ru
<nÎ>(E) ⊆ Rr

<nÎ>(E) ⊆ Ri
<nÎ>(E).

2. Ru
<nÎ>(E) ⊆ Rl

<nÎ>(E) ⊆ Ri
<nÎ>(E).

3. Ri
<nÎ>

(E) ⊆ Rr
<nÎ>

(E) ⊆ Ru
<nÎ>

(E).

4. Ri
<nÎ>

(E) ⊆ Rl
<nÎ>

(E) ⊆ Ru
<nÎ>

(E).

Proof (1) Let v ∈ Ru
<nÎ>(E), then Ru(v) ∩ Ec ∈ < nÎ >. 	⇒ (Rr (v) ∪ Rl(v)) ∩ Ec ∈

< nÎ >. 	⇒ Rr (v) ∩ Ec ∈ < nÎ >. 	⇒ Rr (v) ∩ Ec ∈ < nÎ >. 	⇒ v ∈ Rr
<nÎ>

(E). Similarly, let v ∈ Rr
<nÎ>(E) 	⇒ Rr (v) ∩ Ec ∈ < nÎ >. 	⇒ Ri (v) ∩ Ec ∈

< nÎ >. (As Ri (v) ⊆ Rr (v).)

(2) Proof of this part is similar to (1).
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(3) For the proof, let v /∈ Ru
<nÎ>

(E). 	⇒ Ru(v) ∩ E ∈ < nÎ >. 	⇒ Rr (v) ∩ E ∈
< nÎ >. 	⇒ v /∈ Rr

<nÎ>
(E). So, Rr

<nÎ>
(E) ⊆ Ru

<nÎ>
(E). Similarly, Ri

<nÎ>
(E) ⊆

Rr
<nÎ>

(E). (4) Proof of this part is similar to (3). ��

4 A comparison of the introduced ideology with the already
established ones

The term accuracy has a vital role in the decision-making process, wherein the theories of
rough set or nano-topology are used in any information table or real-life situations. Remark-
ably, the suggested approach, which is based onmultiple ideals to generate the nano-topology
is way better than the previous ones because the generation of nano-topology through one
ideal is just a particular case of this method, where all the ideals are the same. Also, the
standard definition is a particular case of this definition if the domain of R is restricted to an
equivalence relation and ideals contain necessarily an empty set only. In our technique, the
lower approximation increases and the boundary decreases; therefore, leading to higher accu-
racy in comprehending the interrelation between conditional attributes and decision-related
factors, that’s why it has a great scope for furthermore research and physical importance.
Also, as the proposed approach extends the standard definitions restricted to equivalence
relation to a broader term; that is, binary relation, hence it is of great significance for future
scope in the real world.

Some results are given below to show the priority of the proposed theory to the previous
ones. If Îi , Î2, .....În are the ‘n’ ideals which generate ideal < nÎ >, then the following are
true ∀ j ∈ Q and ∀ i=1,2,...,n:

1. R j
<nÎ>

(Z) ⊆ R j
Îi

(Z) ⊆ R j (Z).

2. R j (Z) ⊆ R j
Îi (Z) ⊆ R j

<nÎ>(Z).

3. B<nÎ>
R j (Z) ⊆ BÎi R j (Z) ⊆ BR(Z).

4. μ(Z) ≤ μÎi
R j

(Z) ≤ μ<nÎ>
R j

(Z).
Note thatμ refers to the accuracy, that is the ratio of the lower approximation to the upper
one.

5. Multi-ideal nano-topology τ<nÎ>
R j

(H), single-ideal topology τ
Îi
R j

(H), and standard term
of nano-topology τR(H) are independent of each other.

6. Multi-ideal approximations are the same as the single ideal ones when Î1 = Î2 =
.........În = Î, so multi-ideal nano-topology is a generalization of the nano-topology,

generated by a single ideal, τ ÎR j
(H), as defined in Definition 2.12.

7. If the relation is equivalence and Î1 = Î2 = .......În = ∅, then the multi-ideal nano-
topology is same as the basic definition of nano-topology, that is τR(H), as defined in
Definition 2.2.

In what follows, we mention the main advantages of the proposed research to highlight
its significance and future scope.

This theory can also be applied to assess the credibility of expert reports, which are mathe-
matically represented as ideals. As previously mentioned, this method combines ′n′ ideals to
create a multi-ideal nano-topology, which is then used to interpret data. The approximation
of a set depends on the choice of ideals, as given in Definition 3.6. Given an information
table containing a universal setU , parameters (conditional attributes) defining R, ′n′ opinions
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(ideals), and a final decision (X). If Î1,Î2,...Îk ....În are the ′n′ ideals, then < nÎ > is the
ideal generated by all of them. We intend to compare the proficiency of the different experts.
To demonstrate this, the following remarks are stated, followed by an example.

a. If R is an indiscernibility relation with respect to a single attribute/parameter such that

τ<nÎ>
R j

(H) = τ
Îk
R j

(H) for every j , then Îk is not an insignificant or irreliable report for

assessing that specific parameter in comparison to < nÎ >.

b. If τ<nÎ>
R j

(H) = τ
Îk
R j

(H) for the relation R with respect tomultiple attributes (taken one at

a time), and τ<nÎ>
R j

(H) = τ
Îk
R j

(H) for the relation R all attributes (taken simultaneously),

then Îk is a reliable report for the overall information system.

c. If R is the relation with respect to all conditional attributes/ parameters and τ<nÎ>
R j

(H) �=
τ
Îk
R j

(H), then the Îk is not a reliable opinion, this report should be discarded and shouldn’t
be trusted independently for forming or analyzing a decision. This ideal (expert opinion)
cannot be trusted to investigate the interrelation of conditional and decision attributes in
information systems.

d. If R is the indiscernibility relation with respect to multiple attributes (taken one at a time
as well as taken simultaneously) and the respective multi-ideal nano topologies satisfy

τ
<nÎ>−Îk
R j

(H) = τ<nÎ>
R j

, then the Îk is totally insignificant opinion, this report should be

discarded and not be considered sufficient for the data interpretation. Here,< nÎ > −Îk

is the ideal generated by n − 1 ideals.

< nÎ > −Îk =< Î1, Î2, ....Îk−1, Îk+1....În > .

e. If R is the relation with respect to multiple attributes (taken one at a time as well as taken

simultaneously) and the respective multi-ideal nano topologies satisfy τ
<nÎ>−Îk
R j

(H) �=
τ<nÎ>

R j
, then the Îk is a significant opinion, this report shouldn’t be neglected right away

as it will influence the data analysis. Throughout, Îk ⊆ < nÎ > for every k = 1, 2, ...n.

These pros can be observed from the following example (Example 4.1).

Example 4.1 Consider an example of six candidates competing for a job in Table 1. Let us
suppose that three experts gave their opinions on the selection of candidates based on their
performance in a preliminary test in an organization, which comprised general knowledge,
academic scores, and interviewing skills. Finally, three candidates were selected for the job.
So, based on the information, we compare the experts’ opinions.

Let U = {ς1, ς2, ς3, ς4, ς5, ς6}, H = {ς1, ς3, ς6}, and Hc = {ς2, ς4, ς5}. The domain
of the attribute general knowledge = {good, medium, poor} (Note that good assessment is
given to score 81–90, medium assessment is given to score 71–80, and poor evaluation is
given to score 61–70. The domain of the attribute academics = {excellent, average, weak}
(Note that excellent assessment is given to score 76–85, medium assessment is given to score
66–75, and poor evaluation is given to score 56–65. The domain of the attribute interview
skills = {outstanding, mediocre, terrible}.

The domain of the decision attribute = {�, ✗}.
The indiscernibility relation (with respect to single attribute “general knowledge")

R1 = {{ς1, ς5}, {ς2}, {ς3, ς4, ς6}}. The indiscernibility relation (with respect to the attribute
“academics") R2 = {{ς1, ς4, ς6}, {ς2, ς5}, {ς3}}. The indiscernibility relation (with respect
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Table 1 Illustration of candidates with respect to different parameters and decision

Candidates General knowledge Academics Interview skills Selection

ς1 69 (poor) 85 (excellent) Outstanding �
ς2 80 (medium) 56 (weak) Mediocre ✗

ς3 82 (good) 67 (average) Outstanding �
ς4 82 (good) 76 (excellent) Outstanding ✗

ς5 65 (poor) 63 (weak) Terrible ✗

ς6 90 (good) 85 (excellent) Outstanding �

to the attribute “interview skills") R3 = {{ς1, ς3, ς4, ς6}, {ς5}, {ς2}}. The relation (with
respect to all the attributes taken simultaneously) R4 = {{ς4, ς6}, {ς1}, {ς2}, {ς3}, {ς5}}.

Let three expert opinions be represented as Î1, Î2, and Î3. So, Î1 = {∅, {ς3}, {ς4}, {ς3, ς4}},
Î2 = {∅, {ς1}, {ς6}, {ς1, ς6}}, Î3 = {∅, {ς3}}. Then, ideal generated by Î1 , Î2, and Î3 is
< Î1, Î2, Î3 > = < 3Î > = {∅, {ς1}, {ς3}, {ς4}, {ς6}, {ς1, ς3}, {ς1, ς4}, {ς1, ς6}, {ς3, ς4},
{ς3, ς6}, {ς4, ς6}, {ς1, ς3, ς4}, {ς1, ς3, ς6}, {ς3, ς4, ς6}, {ς1, ς4, ς6}, {ς1, ς3, ς4, ς6}}.
Observation: For the relation R4, where we consider indiscernibility with respect to all
attributes taken together, then the respective ideal nano topologies

τ<3Î>
R4

(H) = τ
Î1
R4

(H) = τ
Î2
R4

(H) = τ
Î3
R4

(H).

On the other hand, when we consider R1, R2, R3 (considering parameters, one at a time),

τ<3Î>
Rq

(H) �= τ
Î1
Rq

(H) �= τ
Î2
Rq

(H) �= τ
Î3
Rq

(H) ∀ q ∈ {1, 2, 3}.
Also, in this case

τ
<3Î>−Î1
Rq

(H) = τ
<Î2,Î3>

Rq
(H) �= τ<3Î>

Rq
(H) ∀ q ∈ {1, 2, 3}.

τ
<3Î>−Î2
Rq

(H) = τ
<Î1,Î3>

Rq
(H) �= τ<3Î>

Rq
(H) ∀ q ∈ {1, 2, 3}.

τ
<3Î>−Î3

Rq
(H) = τ

<Î1,Î2>
Rq

(H) = τ<3Î>
Rq

(H) ∀ q ∈ {1, 2, 3}.

	⇒ Î3 is insignificant when relation R = R1, R2, R3 when the conditional attributes
are taken under consideration one by one. Also, in this case, single-ideals Î1, Î2 are neither
insignificant nor reliable when compared to the ideal generated by multiple ones. However,
whenmerged to generate amulti-ideal, all three ideals yieldmore accurate and reliable results.
(Calculation is skipped as it is quite cumbersome.) Hence, we can conclude that relying on
a single ideal (representing an expert opinion) is not sufficient or efficient. It’s evident from
this example that no individual ideal is adequate for thoroughly analyzing the decision;
this is where multiple ideals prove their significance. This underscores the importance and
utility of using multiple ideals rather than a single one in feature selection and multi-criteria
decision-making. By incorporating more than one ideal in rough sets, the granularity of
analysis improves, allowing a more structured interpretation of information. This multi-
ideal approach enables the identification and elimination of inconsistencies, leading to more
precision within rough sets. Enhanced accuracy is well-illustrated in Table 2. Clearly,

μR(H) ≤ μÎi
R j

(H) ≤ μ<3Î>
R j

(H)
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Table 2 Comparison of accuracies of different rough approximations of multi-ideal to single-ideal approach

Relation (R) μR(H) μÎ1 R(H) μÎ2 R(H) μÎ3 R(H) μ<3Î>
R(H)

R1 0 2
5 0 0 2

3

R2
1
4

3
4

1
3

1
4 1

R3 0 1 3
4 0 1

R4 1 1 1 1 1

Table 3 A comparison of the upper approximations of Z of the introduced ideology with the previous ones

Z UR(Z) R j
Î1 (Z) R j

Î2 (Z) R j
<nÎ>

(Z)

{υ1} {υ1, υ3} {υ1} {υ1, υ3} {υ1}
{υ2} {υ2} {υ2} {υ2} {υ2}
{υ3} {υ1, υ3} {υ1, υ3} {υ1, υ3} {υ1, υ3}
{υ4} {υ4} {υ4} {υ4} {υ4}
{υ1, υ2} {υ1, υ2, υ3} {υ2, υ1} {υ1, υ2, υ3} {υ2, υ1}
{υ1, υ3} {υ1, υ3} {υ1, υ3} {υ1, υ3} {υ1, υ3}
{υ1, υ4} {υ1, υ2, υ4} {υ1, υ4} {υ1, υ4, υ3} {υ1, υ4}
{υ2, υ3} {υ1, υ2, υ3} {υ1, υ2, υ3} {υ1, υ2, υ3} {υ1, υ2, υ3}
{υ2, υ4} {υ2, υ4} {υ2, υ4} {υ2, υ4} {υ2, υ4}
{υ3, υ4} {υ1, υ3, υ4} {υ1, υ3, υ4} {υ1, υ3, υ4} {υ1, υ3, υ4}
{υ1, υ2, υ3} {υ2, υ1, υ3} {υ2, υ1, υ3} {υ2, υ1, υ3} {υ2, υ1, υ3}
{υ2, υ3, υ4} {υ1, υ2, υ3, υ4} {υ1, υ2, υ3, υ4} {υ1, υ2, υ3, υ4} {υ1, υ2, υ3, υ4}
{υ1, υ2, υ4} {υ1, υ2, υ4} {υ1, υ2, υ4} {υ1, υ2, υ3, υ4} {υ1, υ2, υ4}
{υ1, υ3, υ4} {υ1, υ2, υ3, υ4} {υ1, υ3, υ4} {υ1, υ3, υ4} {υ1, υ3, υ4}
{υ1, υ2, υ3, υ4} {υ1, υ2, υ3, υ4} {υ1, υ2, υ3, υ4} {υ1, υ2, υ3, υ4} {υ1, υ2, υ3, υ4}

∀ i=1,2,...,3 and ∀ R = R1, R2, R3, R4 as shown in Table 2.

We construct the next two examples to clarify the preference of the proposed approach
compared to the foregoing ones in terms of upper approximation, lower approximation,
boundary region, and accuracy measure. The example 4.2 is built with respect to an equiva-
lence relation and the next one 4.3 is structured with respect to a non-equivalence relation.

Example 4.2 LetU = {υ1, υ2, υ3, υ4}. Also, let R = {{υ1, υ1}, {υ2, υ2}, {υ3, υ3}, {υ4, υ4}},
{υ1, υ3}, {υ3, υ1}; it is clear that R is an equivalence relation. Let us consider that Î1 =
{∅, {υ1}} and Î2 = {∅, {υ4}}. Now, < 2Î > = < Î1, Î2 > = {∅, {υ1}, {υ4}, {υ1, υ4}}.
As relation is equivalence, Rl(k) = Rr (k) = Ri (k) = Ru(k) for every k ∈ {υ1, υ2, υ3, υ4}.
Comparison of our introduced approach is done with the previous ones in Tables 3, 4, 5 and
6:

Example 4.3 Let U = {υ1, υ2, υ3, υ4}. Also, let R = {{υ1, υ1}, {υ1, υ2}, {υ2, υ4},
{υ3, υ1}}, {υ3, υ4}, {υ4, υ3}, {υ4, υ2}, {υ2, υ2}, {υ3, υ3}, {υ4, υ4}. Note that R is reflexive
but non-equivalence relation. Î1 = {∅}. Î2 = {∅, {υ1}, {υ4}, {υ1, υ4}}. Î3 = {∅, {υ4}}.
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Table 4 A comparison of the lower approximations of Z of the introduced ideology with the previous ones

Z L R(Z) R j
Î1 (Z) R j

Î2 (Z) R j
nI (Z)

{υ1} {υ1} {∅} ∅ ∅
{υ2} {υ2} {υ2} {υ2} {υ2}
{υ3} {υ3} {υ3} ∅ {υ3}
{υ4} {υ4} {υ4} {υ4} {υ4}
{υ1, υ2} {υ2} {υ2} {υ2} {υ2}
{υ1, υ3} {υ1, υ3} {υ1, υ3} {υ1, υ3} {υ1, υ3}
{υ1, υ4} {υ4} {υ4} {υ4} {υ4}
{υ2, υ3} {υ2, υ3} {υ2} {υ2} {υ2, υ3}
{υ2, υ4} {υ2, υ4} {υ2, υ4} {υ2, υ4} {υ2, υ4}
{υ3, υ4} {υ3, υ4} {υ3, υ4} {υ4} {υ3, υ4}
{υ1, υ2, υ3} {υ2, υ1, υ3} {υ2, υ1, υ3} {υ2, υ1, υ3} {υ2, υ1, υ3}
{υ2, υ3, υ4} {υ2, υ3, υ4} {υ3} {υ2, υ4} {υ2, υ3, υ4}
{υ1, υ2, υ4} {υ1, υ2, υ4} {υ2, υ4} {υ2, υ4} {υ2, υ4}
{υ1, υ3, υ4} {υ1, υ3, υ4} {υ1, υ3, υ4} {υ1, υ3, υ4} {υ1, υ3, υ4}
{υ1, υ2, υ3, υ4} {υ1, υ2, υ3, υ4} {υ1, υ2, υ3, υ4} {υ1, υ2, υ3, υ4} {υ1, υ2, υ3, υ4}

Table 5 A comparison of the boundary of Z of the introduced ideology with the previous ones

Z BR(Z) BÎ1 R j (Z) BÎ2 R j (Z) B<nÎ>
R j (Z)

{υ1} {υ3} {υ1} {υ1, υ3} {υ1}
{υ2} ∅ ∅ ∅ ∅
{υ3} {υ1} {υ3} {υ1, υ3} {υ1}
{υ4} ∅ ∅ ∅ ∅
{υ1, υ2} {υ1, υ3} {υ1} {υ1, υ3} {υ1}
{υ1, υ3} ∅ ∅ ∅ ∅
{υ1, υ4} {υ1, υ2} {υ1} {υ1, υ3} {υ1}
{υ2, υ3} {υ1} {υ1, υ3} {υ1, υ3} {υ1}
{υ2, υ4} ∅ ∅ ∅ ∅
{υ3, υ4} {υ1} {υ1} {υ1, υ3} {υ1}
{υ1, υ2, υ3} ∅ ∅ ∅ ∅
{υ2, υ3, υ4} {υ1} {υ1, υ2, υ4} {υ1, υ3} {υ1}
{υ1, υ2, υ4} ∅ {υ1} {υ1, υ3} {υ1}
{υ1, υ3, υ4} {υ3} ∅ ∅ ∅
{υ1, υ2, υ3, υ4} ∅ ∅ ∅ ∅

< 3Î > = < Î1, Î2, Î3 >= {∅, {υ1}, {υ4}, {υ1, υ4}}. Note that if the relation is non-
equivalence, the standard definition of nano-topology is not applicable. Also, in general,
Rl(k) �= Rr (k) �= Ri (k) �= Ru(k) for every k ∈ {υ1, υ2, υ3, υ4}.

A comparison of different neighborhoods is done with the previous ones in Tables 7 and
8 with respect to a subset Z = {υ1, υ3}.
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Table 6 A comparison of the accuracy of Z of the introduced ideology with the previous ones

Z μR(Z) μÎ1 R j
(Z) μÎ2 R j

(Z) μ<nÎ>
R j

(Z)

{υ1} 1
2 0 0 0

{υ2} 1 1 1 1

{υ3} 1
2

1
2 0 1

2
{υ4} 1 1 1 1

{υ1, υ2} 1
3

1
2

1
3

1
2

{υ1, υ3} 1 1 1 1

{υ2, υ3} 1
3

1
2

1
3

1
2

{υ1, υ4} 2
3

1
3

1
3

2
3

{υ2, υ4} 1 1 1 1

{υ3, υ4} 2
3

2
3

1
3

2
3

{υ1, υ2, υ3} 1 1 1 1

{υ2, υ3, υ4} 3
4

1
4

1
2

3
4

{υ1, υ2, υ4} 1 2
3

1
2

2
3

{υ1, υ3, υ4} 3
4 1 1 1

{υ1, υ2, υ3, υ4} 1 1 1 1

Table 7 A comparison of the
upper, lower approximations and
boundaries of Z of the introduced
topology with the previous
notions for j-neighborhoods,
where j ∈ {r , i, l, u}

j r l i u

R j
Î1 (Z) {υ1, υ3} {υ1, υ3} {υ1, υ3} {υ1, υ3}

R j
Î2 (Z) {υ1, υ3} {υ1, υ3, υ4} {υ1, υ3} {υ1, υ3}

R j
Î3 (Z) {υ1, υ3} {υ1, υ3} {υ1, υ3} {υ1, υ3}

R j
<3Î>

(Z) {υ1, υ3} {υ1, υ3} {υ1, υ3} {υ1, υ3}
R j

Î1 (Z) {υ1} {υ1, υ3} {υ1, υ3} {υ1}
R j

Î2 (Z) {υ1, υ3} {υ1, υ3} {υ1, υ3} {υ1}
R j

Î3 (Z) {υ1, υ3} {υ1, υ3} {υ1, υ3} {υ1, υ3}
R j

<3Î>(Z) {υ1, υ3} {υ1, υ3} {υ1, υ3} {υ1, υ3}
BÎ1 R j (Z) {υ3} ∅ ∅ {υ3}
BÎ2 R j (Z) ∅ {υ4} {∅} {υ3}
BÎ3 R j (Z) ∅ ∅ ∅ ∅
B<nÎ>

R j (Z) ∅ ∅ ∅ ∅

123



  400 Page 16 of 22 K. Kaur et al.

Table 8 The comparison of the
accuracy measures of Z of the
suggested topology with the
established ones for
j-neighborhoods, where
j ∈ {r , i, l, u}

j r l i u

μ<3Î>
R j

(Z) 1 1 1 1

μÎ1 R j
(Z) 1

2 1 1 1
2

μÎ2 R j
(Z) 1 2

3 1 1
2

μÎ3 R j
(Z) 1 1 1 1

In what follows, we present an algorithm for detecting the core from any information table
from a given set of attributes.

Step I: If U is the universe set and H is a finite set of attributes that can further be
categorized in two parts, H1 of conditional attributes/factors and H2 of decision-related
attributes/factors, a binary relation R on U corresponding to H1 and X ⊆ U , then tabularize
the data, where columns are labelled as a particular set of attributes, rows are specified by
entities and cells of the table are entries assigned to attributes according to the respective
domains. Also, Î1, Î2 .......and În are the ’n’ ideals on U , which signify the opinions of
various known experts.

Step II : Using Definition 3.3, find the lower and upper approximation along with the
boundary of X with respect to R, as per the notion of multi-ideal approximation space.

Step III : Induce the multi-ideal nano-topology using Definition 3.6 τ<nÎ>
R j

(X) on U .
Step IV : Remove a factor/attribute z from H1. After removing that z, find the lower and

upper approximations and hence the boundary of X with respect to the altered relation R′ on
H1 − {z}.

Step V : Construct the multi-ideal nano-topology τ
′
R j

<nÎ>
(X) according to the modified

data on U .
Step VI : Replicate steps IV and V for each attribute in H1.

Step VII : The attributes in H1 for which τ<nÎ>
R j

(X) �= τ
′
R j

<nÎ>
(X) comprise the col-

lection of the most significant traits or characteristics, which is referred mathematically as
core(R).

5 An application of multi-ideal nano-topology to diagnosis and
treatment of dengue disease

The core, as mentioned in the algorithm represents the set of attributes essential for preserv-
ing the classification ability of a dataset. It is the intersection of all reducts and contains only
indispensable attributes. Identifying the core helps simplify data analysis while maintain-
ing critical information for decision-making. This section deals with a real-life example of
dengue, where nano-topology is applied to determine the key symptoms responsible for the
disease. Secondly, the most suitable medicine is suggested based on the given data. Through-
out this application, as we are considering equivalence relation, so R j neighborhoods are
indiscernible, hence respective topologies are indistinguishable, whichmeans j ∈ {l, r , i, u}.
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Table 9 Illustration of patients with respect to various symptoms and reports

Patients Rashes Fever Headache Vomiting Fatigue Decision

�1 + + – – + �
�2 – + + + + �
�3 + + – + – �
�4 – – + + + ✗

�5 + + – – + ✗

�6 + + – + + ✗

�7 + + – + – �
�8 + – – – – ✗

5.1 Diagnosis of dengue disease

Table 9 demonstrates some patients {�1, �2, �3, �4, �5, �6, �7, �8} with respect to different
conditional attributes (symptoms) such as rashes, fever, headache, vomiting, and fatigue
whereas as decision (dengue report) is the decision attribute. The domain of each attribute is
given as {+, -} depending on whether the patient has that symptom or not. Also, the domain
of the decision attribute is given as {�, ✗}.

Now, the universe U is {�1, �2, �3, �4, �5, �6, �7, �8}. Let R be an equivalence rela-
tion on U with respect to the collection of all attributes, taken together. so R =
{{�1, �5}, {�3, �7}, {�2}, {�4}, {�6}, {�8}}. Also, Î1 = {∅, {�2}, {�3, �2}, {�3}} refers to the
report of external expert 1, Î2 = {∅, {�3}, {�7, �3}, {�7}} refers to the report of any external
expert 2 and Î3 = {∅, {�7}} refers to the report of any external expert 3. < Î1, Î2, Î3 > =
{∅, {�2}, {�3}, {�7}}, {�2, �3}, {�3, �7}, {�2, �7}, {�2, �3, �7}} refers to the combined report
of all three external health experts.

Let X = {�1, �2, �3, �7} be the patients having positive report of dengue. So, Xc =
U − X = {�4, �5, �6, �8}. By the definition, the nano-topology on U with respect to X is

τ
<Î1,Î2,Î3>
R j

(X) = τ<3Î>
R j

(X) = {U ,∅, {�2, �3, �7}, {�2, �3, �7, �1, �5}, {�1, �5}}.
Case 1: If the symptom“rashes" is neglected from the collectionof conditional attributes, then

R−(rashes) = {{�1, �5}, {�3, �7}, {�2}, {�4}, {�6}, {�8}}Hence, topology induced
by R′ = R − (rashes) is given by τ

′
R j

<3Î>
(X) = {U ,∅, {�2, �3, �7}, {�2, �3,

�7, �1, �5}, {�1, �5}} = τ<3Î>
R j

(X).
Case 2: If “fever" is removed from the collection of condition attributes, then R −( f ever) =

{{�1, �5}, {�3, �7}, {�2, �4}, {�6}, {�8}}. Hence, topology induced by R′ = R −
( f ever) is givenby τ

′
R j

<3Î>
(X) = {U ,∅, {�3, �7}, {�1, �2, �3, �5, �7}, {�1, �2, �5}}

�= τ<3Î>
R j

(X).
Case 3: If “headache" is excluded from the collection of attributes, then R−(headache) = R

and hence, topology induced by R′ = R − (headache) is given by τ
′
R j

<nÎ>
(X) =

τ<nÎ>
R j

(X).

Case 4: If “vomiting" is neglected from the collection of attributes, then R′ = R −
(vomitting) = {{�1, �5, �6}, {�2}, {�3, �7}, {�4}, {�8}} and the topology induced

by R′ is given by τ
′
R j

<3Î>
(X) = τR j

<3Î>(X).
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Table 10 Illustration of medicines with respect to various conditions and reports

Medicines cost Dosage A.R.T R.O.A side-effects chemical/herbal (Recomm.)

ϑ1 low medium 7–15 Oral Negligible Herbal �
ϑ2 high heavy ≥ 15 Parenteral Negligible Chemical ✗

ϑ3 low light ≤ 7 Oral Negligible Herbal ✗

ϑ4 high light 7–15 Oral Significant Ayurvedic �
ϑ5 high heavy ≥ 15 Parenteral Significant Chemical ✗

ϑ6 low light ≤ 7 Oral Negligible Herbal ✗

ϑ7 low light 7-15 Oral Negligible Herbal �
ϑ8 high heavy ≤ 7 Parenteral Significant Chemical ✗

ϑ9 high heavy ≥ 15 Parenteral Significant Chemical �
ϑ10 low light ≤ 7 Oral Negligible Herbal �

Case 5: If “fatigue" is neglected from the factors, then R−( f atigue) = {{�1, �5}, {�2}, {�3, �6,
�7}, {�4}, {�8}} and hence topology induced by R′ = R − ( f atigue) is given by

τ
′
R j

<3Î>
(X) = {U ,∅, {�3, �7}, {�1, �2, �3, �5, �7}, {�1, �2, �5}} �= τR j

<3Î>(X).

According to the above computations, we get that the symptoms of fever, and fatigue are
the core of R; i.e., Core (R)={Fever, Fatigue}. Hence, we arrive at the conclusion that “fever"
and “fatigue" are the key symptoms to judge whether the patient has dengue disease or not.

5.2 Treatment of dengue disease

Secondly, we find the best suitable or the most appropriate medicine which can cure the
disease of dengue depending upon the various conditional attributes. Consider Table 10.

Take X = {ϑ1, ϑ4, ϑ7, ϑ9, ϑ10} be the five medicines which are recommended by
a health specialist and Xc = {ϑ2, ϑ3, ϑ5, ϑ6, ϑ8} be the set of medicines which have
not been recommended by a health specialist. Here, Î1 = {∅, {ϑ1}, {ϑ3}, {ϑ1, ϑ3}},
Î2 = {∅, {ϑ5}, {ϑ3}, {ϑ9}, {ϑ3, ϑ9}, {ϑ5, ϑ9}, {ϑ3, ϑ9}, {ϑ3, ϑ5, ϑ9}} and Î3 = {∅, {ϑ9}}.
< Î1, Î2, Î3 > = {∅, {ϑ1}, {ϑ3}, {ϑ5}, {ϑ9}, {ϑ3, ϑ5}, {ϑ5, ϑ9}, {ϑ3, ϑ9}, {ϑ1, ϑ3},
{ϑ1, ϑ9}, {ϑ1, ϑ5}, {ϑ1, ϑ3, ϑ5}, {ϑ1, ϑ3, ϑ9}, {ϑ1, ϑ5, ϑ9}, {ϑ3, ϑ5, ϑ9}, {ϑ1, ϑ3, ϑ5, ϑ9}}.
Here, Î1, Î2 and Î3 represent the prescription of medicines by external doctors 1, 2, and
3 respectively. < Î1, Î2, Î3 > i.e. ideal generated by Î1, Î2 and Î3 means the collaborative
report of three expert doctors. Note that the linguistic terms (such as high, low, heavy, etc)
in an information table represent qualitative data, facilitating the understanding of attributes
in natural language. They enable more intuitive data analysis, improve the interpretability
of results, and bridge the gap between human reasoning and computational processes, thus
enhancing data interpretation in complex systems. Usually, we don’t have specified quantita-
tive data, so it is more useful to use these terms to study the interrelation of various attributes
and entities.

Here,

(i) The decision attributes are {�,×} depending upon whether recommended or not.
(ii) The domain of attribute (cost) = {low, high}.
(iii) Domain of attribute (dosage) = {heavy, medium, light}.
(iv) Domain of attribute( average recovery time or A.R.T) = {7− 15,≥ 15,≤ 7} (in days).
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(v) Domain of attribute (route of administration) = {oral, parenteral}.
(vi) Domain of attribute(side-effects) = {negligible, significant}.
(vii) The domain of attribute (nature of medicine) = {herbal, chemical, ayurvedic}.

Now, if R is the indiscernibility relation, it means we say that two medicines
are related if they are indistinguishable from a given set of attributes. Here, R ={{ϑ1}, {ϑ2}, {ϑ3, ϑ6, ϑ10}, {ϑ4}, {ϑ5, ϑ9}, {ϑ7}, {ϑ8}

}
.Throughout, j ∈ {l, r , i, u}. If Î1, Î2, Î3

given and X ⊆ U , then multi-ideal nano-topology can be given by τ<3Î>
R j

(X) =
{∅, U , R j

<3Î>(X), R j
<3Î>

(X), B<3Î>
R j (X)} = {∅, U , {ϑ1, ϑ4, ϑ7, ϑ9}, {ϑ1, ϑ4, ϑ3, ϑ6, ϑ7,

ϑ9, ϑ10}, {ϑ3, ϑ6, ϑ10}.
Case 1: Firstly, when we neglect an attribute “cost" from the set of attributes, then we have

R′ = R−{cost}. So, R′ = {{ϑ1}, {ϑ2}, {ϑ3, ϑ6, ϑ10}, {ϑ4}, {ϑ5, ϑ9}, {ϑ7}, {ϑ8}
} =

R. Hence, τ
′
R j

<3Î>
(X) is induced by R′ = R−{cost} is equal to τ<3Î>

R j
(X), i.e.,

τ
′
R j

<3Î>
(X) = {∅, U , R′

j
<3Î>

(X), R′
j
<3Î>

(X), B<3Î>
R′

j (X)} = τ<3Î>
R j

(X)

as R′ = R.
Case 2: Secondly, neglecting “dosage" from the attributes’ set, then we have R′ =

R−{dosage}. So, R′ = R−{dosage}which implies that R′ = {{ϑ1, ϑ7}, {ϑ2}, {ϑ3, ϑ6,

ϑ10}, {ϑ4}, {ϑ5, ϑ9}, {ϑ8}
} �= R. But, τ

′
R j

<3Î>
(X) (with respect to R′) is given by

τ
′
R j

<3Î>
(X) = {∅, U , {ϑ1, ϑ4, ϑ7, ϑ9}, {ϑ1, ϑ4, ϑ3, ϑ6, ϑ7, ϑ9, ϑ10}, {ϑ3, ϑ6, ϑ10} =

τ<3Î>
R j

(X).
Case 3: Then, neglecting “average recovery time" (A.R.T) from the attributes’ set, then we

have R′ = R−{A.R.T }. So, R′ = {{ϑ1}, {ϑ2}, {ϑ3, ϑ6, ϑ7, ϑ10}, {ϑ4}, {ϑ5, ϑ8, ϑ9}
}

�= R. Hence, τ
′
R j

<3Î>
(X) = {∅, U , {ϑ1}, {ϑ1, ϑ3, ϑ4, ϑ6, ϑ7, ϑ9, ϑ10}, {ϑ3, ϑ4,

ϑ6, ϑ7, ϑ9, ϑ10}} �= τ<3Î>
R j

(X).
Case 4: On removing factor “Route of administration" (R.O.A) from the attributes’ set, then

wehave R′ = R−{R.O.A} = {{ϑ1}, {ϑ2}, {ϑ3, ϑ6, ϑ10}}, {ϑ4}, {ϑ5, ϑ9}, {ϑ7}, {ϑ8}
}

= R. Hence, τ
′
R j

<3Î>
(X) is induced by R′ = R − {R.O.A} is equal to τ<3Î>

R j
(X),

i.e., τ
′
R j

<3Î>
(X) = τ<3Î>

R j
(X) as R′ = R.

Case 5: Neglecting “side-effects" (S.E.) from the attributes’ set, then we have R′ =
R−{S.E}. So, R′ = {{ϑ1}, {ϑ2, ϑ5, ϑ9}, {ϑ3, ϑ6, ϑ10}, {ϑ4}, {ϑ7}, {ϑ8}

} �= R.

Hence, τ
′
R j

<3Î>
(X) = {∅, U , {ϑ1, ϑ4, ϑ7}, {ϑ1, ϑ3, ϑ4, ϑ6, ϑ7, ϑ9, ϑ10},

{ϑ3, ϑ6, ϑ9, ϑ10}} �= τ<3Î>
R j

(X).
Case 6: Lastly, neglecting “Chemical/herbal/ayurvedic" (C./H./A) from the attributes’ set,

then we have R′ = R−{(C./H./A)}. So, R′ = {{ϑ1}, {ϑ2}, {ϑ3, ϑ6, ϑ10}, {ϑ4}, {ϑ5,

ϑ9}, {ϑ7}, {ϑ8}
} = R. Hence, τ

′
R j

<3Î>
(X) is induced by R′ = R−{(C./H./A)} is

equal to τ<3Î>
R j

(X), i.e., τ
′
R j

<3Î>
(X) = τ<3Î>

R j
(X) as R′ = R.

So, we conclude that the collection of attributes for which τ
′
R j

<3Î>
(X) �= τ<3Î>

R j
(X) is

{average recovery time, side-effects}. Hence, the above-listed attributes are the most imper-
ative in deciding the most appropriate medicines to test on many similar patients. That is,
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core(R)= {average recovery time, side-effects}. Hence, medicines with light short average
recovery time, and negligible side-effects are the best for dengue patients.

In this hypothetical information system, based on the above observation, the most suitable
medicines for the cure of dengue disease = {ϑ3, ϑ6, ϑ10}.

6 Conclusion and future scope

Introduced in 2013 by Thivagar and Richard (2013), nano-topology holds a huge potential in
real-life situations. It can be applied effectively to medicine, information sciences, research,
and technology. In the last ten years, different notions have been studied to generalize the
original definition of nano-topology. Nano-topology has thoroughly been investigated via
different approximations using differentmathematical tools such as ideals and neighborhoods
(Kandil et al. 2021).

In this article, we have proposed a novel technique to compute the approximation opera-
tors of subsets using a finite set of ideals instead of one ideal aiming to heighten the accuracy
measures of subsets. We have explored the fundamentals of present rough models and fur-
nished some examples to clarify their merits compared to some preceding rough set models.
Then, we applied this technique to establish the concept of multi-ideal nano-topology and
discussed its main properties. We have illustrated that the structures of nano-topology and
ideal nano-topology are special cases of multi-ideal nano-topology when ideals are empty
or equal. In the end, we have examined the frame of multi-ideal nano-topology to diagnose
and treat dengue disease and by the given discussion and analysis we showed that multi-ideal
nano-topology has helped in devising an algorithm to study the inter-dependency of vari-
ous factors/conditional attributes and decision attributes if provided the opinions of multiple
experts or reports.

The proposed technique can be used to analyze and simplify complex intelligent systems.
It can be used to study the quantitative as well as qualitative data. It has scope in various fields
like medicine, biochemistry, and engineering. Also, in upcoming work, we will make use of
the current approach to approximate subsets using other types of neighborhood systems and
topological spaces (such as supra topology and infra topology).
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